Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy.
نویسندگان
چکیده
In this study, we report on a novel approach for the label-free and species-specific detection of the plant pathogen Phytophthora ramorum from real samples using surface enhanced Raman scattering (SERS). In this context, we consider the entire analysis chain including sample preparation, DNA isolation, amplification and hybridization on SERS substrate-immobilized adenine-free capture probes. Thus, the SERS-based detection of target DNA is verified by the strong spectral feature of adenine which indicates the presence of hybridized target DNA. This property was realized by replacing adenine moieties in the species-specific capture probes with 2-aminopurine. In the case of the matching capture and target sequence, the characteristic adenine peak serves as an indicator for specific DNA hybridization. Altogether, this is the first assay demonstrating the detection of a plant pathogen from an infected plant material by label-free SERS employing DNA hybridization on planar SERS substrates consisting of silver nanoparticles.
منابع مشابه
Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملProbing biomolecular interactions using surface enhanced Raman spectroscopy: label-free protein detection using a G-quadruplex DNA aptamer.
We demonstrate a strategy for label-free protein detection through monitoring the Surface Enhanced Raman Spectrum of an aptamer probe attached to a gold nanoshell. Low limit of detection and minimal non-specific binding show potential for in vitro and in vivo assays.
متن کاملCoating Of Silver Nanoparticles by Sputtering Method on Glass Substrates as Surface-Enhanced Raman Spectroscopy (SERS) Biosensor for Detection of Whey Protein
This article has no abstract.
متن کاملMolecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...
متن کاملQuantitative label-free RNA detection using surface-enhanced Raman spectroscopy.
Surface-Enhanced Raman Spectroscopy (SERS) was performed to detect label-free RNA. We defined conditions which make it possible to probe the four bases of RNA, in single strands of polyadenosine (pA), polyuridine (pU), polycytosine (pC) and polyguanosine (pG). We therefore present below a quantitative analysis of mixtures of non-hybridized single strands, based on the deconvolution of the SERS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 140 21 شماره
صفحات -
تاریخ انتشار 2015